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Abstract 

 

This paper presents the development of a Multi-Level Security (MLS) lattice model using 

Semantic Web technologies, specifically the Web Ontology Language (OWL), to design and 

validate Mandatory Access Control (MAC) systems with Bell-LaPadula (BLP) properties. The 

Semantic Web, often referred to as the web of data, enhances the existing World Wide Web by 

facilitating data processing and management through machine-readable formats. OWL, a logic-

based language within the Semantic Web framework, is designed to represent complex knowledge 

effectively in semantic forms. By employing an MLS ontology, this research defines dominance 

relationships within the lattice model and conducts various queries to determine if a subject with 

a particular security clearance can access (read/write) an object with a specific security 

classification. Utilizing BLP properties ensures strict adherence to information flow protocols, 

permitting data transfer only from entities with lower classification to those with higher. In 

addition, we propose future research directions which can be extended from our ontology model.  
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1 Introduction 

1.1 Research Motivation 

Web development has continuously evolved since the inception of the Internet in 1962. 

Initially, navigating the web required specialized knowledge. In the 1990s, Sir Tim Berners-Lee, 

the founder of the World Wide Web, developed three fundamental technologies—HTML, URI, 

and HTTP—that transformed how information is accessed, allowing even non-experts to navigate 

the web easily.  

In the last two decades, rapid advancements in web technologies have ushered in an era where 

data is at the core of processing activities, with users increasingly contributing to data generation 

through broadcasting and social networking. Berners-Lee, Hendler, and Lassila (Berners-Lee et 

al., 2001) envisioned a future where the web would serve as the basis for the semantic web, 

enhancing data's machine readability and fostering the development of new technologies for better 

data storage, processing, and knowledge expression.  

This vision is partially realized as semantic web technologies are now integral in sectors like 

healthcare and artificial intelligence, particularly for knowledge modeling. However, information 

security has emerged as a critical challenge, exacerbated by advancements in cloud computing, 

big data, and the Internet of Things. High-profile breaches, such as those at Marriott (Sanger et al., 

2018) and the US Office of Personnel Management (Thomas, 2019), highlight the ongoing need 

to secure information systems in both the private and public sectors.  

The necessity to safeguard sensitive information, such as health records, military data, and 

personal identity details, is more pressing than ever, given the potential for significant financial 

and national security repercussions following data breaches. As a result, Multi-Level Security 

(MLS) policies, prevalent in military operations, are increasingly adopted by various organizations 

to enhance their security measures. These policies mandate stringent access controls based on data 

classification.  

As the web evolves with semantic capabilities, it poses new security challenges that require 

robust measures across all its layers. The absence of studies demonstrating the implementation of 

MLS in a semantic framework point to a critical gap and an urgent need for research in this area. 

As new technologies are embraced, updating access control policies to safeguard data in a 

semantically enriched web environment becomes imperative. policies as organizations adopt new 

web technologies. Therefore, security policies must also evolve to enforce information security 

management in the semantic web environment. 

 

1.2 Organization 

The remainder of the paper is organized as follows. Section 2 summarizes past studies on 

MLS and provides a brief introduction to the semantic web. Section 3 demonstrates how the 

MLS lattice model is constructed using Protégé, and Section 4 discusses how to use the Semantic 

Web Rule Language (SWRL) to apply dominance rules in the ontology. In conclusion, Section 5 

summarizes the work accomplished in this project and discusses areas for future development. 

 

2 Background 

 
2.1 Mandatory Access Control 
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Defined by the National Institute of Standards and Technology (NIST), Mandatory Access 

Control (MAC) is a type of nondiscretionary access control that imposes a uniform security level 

across all subjects and objects within an information system (Editor, n.d.) Its primary goal is to 

restrict information flow from unauthorized subjects (those without necessary security clearance) 

to objects (those with designated security classifications). This system is pivotal in environments 

where the integrity and confidentiality of information are paramount.  

Historically, MAC has been intricately linked to Multi-Level Security (MLS), a framework 

initially developed by the defense community to enhance the protection of sensitive and 

confidential information (Logrippo, 2018). MLS is predominantly utilized within military systems 

and governmental sectors, which often demand more rigorous security measures than those 

required in the private sector. A core component of MLS is the Bell-LaPadula (BLP) model, which 

is designed to prevent the leakage of confidential information from higher to lower security levels, 

adhering strictly to the need-to-know principle(Bell, 2005; Hyun, 2020; Son & Alves-Foss, 2014). 

The BLP model was further detailed by Denning in 1976, who introduced a lattice structure 

to better represent and compare the security levels of user clearances and information 

classifications. This lattice model facilitates the management of access controls in complex 

information systems where a single sensitivity level may not suffice for adequate classification of 

information sensitivity and user clearance.  

In practice, the BLP model incorporates additional dimensions known as compartments—also 

referred to as categories or need-to-know bases—to refine MLS security labels or levels. In this 

research, we conceptualize a security level or label using a colon to separate sensitivity levels and 

their associated set of compartments, as per Elliott & Bell (Elliott Bell, 2011). Examples of how 

these labels are structured include TopSecret:{bio, chem}, Secret:{}, and Unclassified:{nuke, bio}, 

which demonstrate the granularity achievable with this method. 

 

2.1.1 Dominance Rule 

An MLS system has a dominance rule that defines a partial order (≤) over the MLS security 

levels. This partial ordering (≤) is always defined such that two security levels can be compared 

for dominance: 

Given two security levels l1 with sensitivity level S1 and compartment C1, and l2 with 

sensitivity level S2 and compartment C2. We write l1 ≤ l2, meaning l1 is dominated by (is less 

than) l2 or l2 dominates (is greater than) l1 when 

• S2 is equal to or higher than S1 

• C1 is a subset of C2, namely, C1 ⊆ C2 

 

2.2 BLP Security Policy 

The Bell-LaPadula (BLP) model is fundamental to security protocols within information 

systems, ensuring that every subject and object is assigned at least one security label. To prevent 

information flow from entities with higher sensitivity levels to those with lower sensitivity levels 

within the information system, two pivotal security properties aimed at regulating information 

flow: the simple security property and the star property (see Figure 1). 

 
Figure 1 

Left side: Without BLP properties, information can flow from high to low. The simple security 

condition prevents low from reading high. The star property prevents high from writing to low. 

Right side: With BLP properties, information can only flow from low to high. 



Bai and Son/PPJBR  Vol.15, No (1), Spring 2024, pp 

28 

 

 

 

2.2.1 Simple Security Policy  

Also known as the “no read-up” policy, the BLP model states that a subject with a certain 

security clearance cannot read an object with a higher classification. Therefore, given the subject’s 

security label sl(S) and the object’s security label sl(O), the subject can read the object when 

sl(O) ≤ sl(S) 

Example 1. Assuming Alice is granted a security clearance TS:{bio}, namely, sl(Alice) 

=TS:{bio}, and the object O1 has the security classification TS:{bio, chem}, namely, sl(O1) = 

TS:{bio, chem}. Since {bio} is a subset of {bio, chem}, Alice cannot read O1 because sl(Alice) ≤ 

sl(O1). 

 

2.2.2 *(Star) Property 

Also known as the “no write-down” policy, this states that a subject with a certain security 

clearance cannot write to any object with a lower security classification. Therefore, given the 

subject’s security label sl(S) and the object’s security label sl(O), the subject can write to the object 

when  

sl(S) ≤ sl(O) 

Example 2. Referring to the same scenario in Example 1, sl(Alice) = TS:{bio} and sl(O1) = 

TS:{bio, chem}. In this case, Alice can write to O1 as sl(Alice) ≤ sl(O1). 

 
Figure 2 

Lattice Structure (Hyun, 2020) 
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Example 3. The diagram in Figure 2 depicts the partial ordering (≤) over the MLS security 

levels as a lattice. Assuming Bob is granted a security clearance TS:{}, namely, sl(Bob) = TS:{}, 

and Frank is granted a security clearance S:{}, namely, sl(Frank) = S:{}. Two objects, O2 is 

classified as TS:{}, namely, sl(O2) = TS:{}, and O3 is classified as S:{}, namely, sl(O3) = S:{}. 

Compare the security labels between the subjects and the objects. Between Bob and O2, sl(Bob) 

= TS:{} = sl(O2), so Bob can read and write O2. Similarly, since sl(Frank) = S:{} = sl(O3), Frank 

can read and write O3. As sl(Bob) = TS:{} is higher than sl(O3) = S:{}, Bob can only read O3. 

Bob will be blocked from writing to O3 because information cannot flow from high to low. As S:{} 

≤ TS:{}, Frank can write to O2 but cannot read O2. 

Example 4. Attaching compartments to sensitivity levels provides more flexibility for 

information classification in a complex information system.  Figure 2 shows that there is no partial 

ordering between TS:{} and S:{bio} because they are not comparable. This means that no 

operation, such as read or write, should be performed between them.  

 

2.3 Multi-Level Security  

The lattice structure of MLS with the BLP model (Figure 3) is formed with vertices connected 

by edges. The model distinguishes two sets of vertices with different colors based on their 

hierarchy levels. Each security label (SL(si, ci)) has two components: sensitivity level si and 

compartment ci. Sensitivity levels are hierarchically defined, ranging from high to low: "Top 

Secret" ≥ "Secret" ≥ "Classified" ≥ "Unclassified". Compartments are defined as {Bio, Nuke} ⊇ 

{Bio} | {Nuke} ⊇ {}. Vertices in the red area represent labels with "Top Secret" clearance (noted 

as TS), and vertices in the orange area represent labels with "Secret" clearance (noted as S) (Hyun, 

2020). 

 
Figure 3 

Lattice Model (Hyun, 2020) 
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Example 5: Based on Figure 2.3, "Top Secret" TS_{} is considered a higher classification 

than "Secret" S_{}. TS_{} can read S_{} because information is allowed to flow from a lower 

classification ("Secret") to a higher classification ("Top Secret"). Conversely, S_{} is prohibited 

from reading up to TS_{} to prevent information from leaking from a higher classification to a 

lower classification. Similarly, S_{} can write up to TS_{}, but TS_{} cannot write down to S_{}. 

Moreover, the BLP model does not grant users with "Top Secret" clearance access to all 

objects. An additional need-to-know restriction, known as a compartment, is applied to block 

irrelevant users from accessing confidential information (Denning, 1976; Panossian, 2019). 

Example 6: Based on Figure.3, assume Mary, with security clearance TS_{}, is trying to 

read/write an object file with security classification S_{Nuke}. Mary passes the first criterion 

because she has a "Top Secret" clearance, which is higher than the object file classification. 

However, she also needs a compartment {Nuke} to meet the second criterion. Since she does not 

have the {Nuke} compartment, she cannot be granted access to objects with {Nuke}. This example 

illustrates how the need-to-know condition is applied to provide an extra layer of protection to the 

information system. 

In this project, the mathematical notation used to define a security label, such as SL(Si,Cj) is 

also expressed in terms of  SL(TS_{Bio,Chem}) or SL(TS, {Bio,Chem}). To examine if there is 

a dominance relationship between two security label variables, both dominance rules must be 

satisfied. Once the dominance relationship is established, the two BLP properties can be easily 

applied to complete the MLS policies based on this relationship.  

In addition, the lattice structure specifies the path of information flow according to the 

dominance relationship between the vertices through the edges (Panossian, 2019). To prevent 

information from leaking from higher classification to lower classification (Figure 4), MLS 

enforces the simple security property and the star property. Example 7 and Example 8 will each 

discuss scenarios illustrating how each BLP property ensures information flows from lower 

classification to higher classification. These examples will demonstrate the rules for determining 

if a subject (S) can read/write an object (O) based on their security labels. 

 
Figure 4 

Information Flow with BLP (Hyun, 2020) 
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Example 7. Assuming a person A (si) has the security clearance S_{Bio} and an object (oi) 

has the classification TS_{Bio, Nuke}, si cannot read oi because SL(si) ≤ SL(oi). However, si can 

read any oj when SL(si) ≥ SL(oj) ≥ SL(ok). For instance, SL(oj) is equal to S_{Bio},  and(ok) is equal 

to S_{}. (Hyun, 2020) 

Example 8. Assuming every variable has the same security label as shown in Example 7, 

person (si) can now write to oi and oj because SL(si) ≤ SL(oj), allowing information to flow from 

lower level security clearance to higher level security clearance. However, person A will not be 

able to write to ok. (Hyun, 2020) 

 

2.4 Introduction to Semantic Web and Technologies 

 
Figure 5 

The Layers of Semantic Web Technology 

 
 

The Semantic Web is an extension of the current World Wide Web, standardized by the W3C. 

Its goal is to make the implicit meaning of data explicitly represented, allowing the data to be 

machine-readable to improve information retrieval and produce more useful work. Several 

semantic web technologies are used in this project, including RDF, OWL, SWRL, and Protégé 

(Figure 5). Each of these technologies will be briefly introduced. 

 

2.4.1 The Resource Description Framework (RDF) 

RDF is a fundamental component of the Semantic Web, built on top of HTML, HTTP, and 

XML to express the semantic meaning of knowledge. A resource can be anything and must be 

uniquely identified and referenced via an Internationalized Resource Identifier (IRI). Knowledge 

is expressed in a list of statements called triples, which follow a simple schema with three 

components: subject, property, and object. In RDF, both the subject and the property must be IRIs, 

while the object of the triple can be either an IRI or a literal (datatype). 

 

2.4.2 The W3C Web Ontology Language (OWL) 

OWL is a Semantic Web language designed to represent rich and complex knowledge based 

on description logic. It describes classes, individuals, and properties, transforming common 
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knowledge from philosophy and mathematics into a formal language in the form of RDF to impart 

semantic meaning. This transformation makes the knowledge machine-understandable. The goal 

of building an OWL ontology is to create a model that represents a subject matter with individual 

entities, types of entities, and types of relationships, as well as to support automated reasoning.  

In OWL, a class represents a group of entities of interest, an individual is an instance of a 

class, and a property defines the relationship between subjects and objects. Description logic 

separates the terminological knowledge base (TBox) from the assertional knowledge base (ABox). 

The TBox describes the relationships between classes when defining the model, while the ABox 

describes how individuals are related to each other. 

Several previous studies have adopted ontology-based approaches to various access control 

policies (Kayes et al., 2018; Kiran & Nalini, 2022; Li & Zhang, 2019; Veloudis et al., 2019). 

However, none of these studies have specifically explored access control within Multi-Level 

Secure (MLS) systems.   

 

2.4.3 The Semantic Rule Language (SWRL) 

SWRL combines OWL ontologies and Datalog expressions, applying Datalog rules to OWL 

ontologies in the form of "If... then..." statements. SWRL rules are structured as "Antecedent -> 

Consequent," where the term "Antecedent" refers to the rule body and "Consequent" refers to the 

rule head (O’Connor et al., 2005). The body represents the "If..." statement, and the head represents 

the "then..." statement. An example of an SWRL rule is: 

SecurityLabel(?a) ^ SecurityLabel(?b) ^ sameAs(?a,?b) -> read(?a,?b) 

This example illustrates the rule stating that “If security label a is equal to security label b, 

then a can read b.” For the implementation of BLP in Section 4, such rules will be created to 

establish the read/write relationships between subjects and objects. Each rule will be discussed 

and the implementation output will be shown. 

Without SWRL, the ontology can still be implemented by manually creating assertions in the 

editor. However, if an ontology has hundreds of assertions, it becomes highly inefficient to process 

the data manually without using an inference engine. SWRL provides automated reasoning 

functions, allowing the inference engine to create inference assertions within milliseconds. 

Moreover, modifying an individual can cause several assertions to change. SWRL can handle the 

rest of the modifications, significantly improving work efficiency. 

Several studies have demonstrated that using SWRL can enhance business process 

management. According to Abadi, Ben-Azza, and Sekkat (Abadi et al., 2018), SWRL is the only 

tool that combines ontology to model information and decision-making rules for industrial 

applications. Matsokis and Kiritsis (Matsokis & Kiritsis, 2011) also suggested using SWRL to 

extend OWL models and develop a learnable approach in production management. Furthermore, 

another study presented that SWRL supports business knowledge management in industrial 

business processes. (Roy et al., 2018) 

 

2.4.2 Protégé  

Protégé is an open-source ontology editor developed by the Stanford Center for Biomedical 

Informatics Research at the Stanford University School of Medicine. This tool is widely used by 

academic, government, and corporate groups. It complies with W3C standards and offers 

visualization support and extensive built-in tools to facilitate ontology construction. Protégé 

provides a variety of features to assist developers in creating, modifying, and managing ontologies 
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(Rubin et al., 2005) such as simple and customizable user interface, support for collaborative work, 

visual support for ontology expressions, built-in reasoners for checking consistency and inference, 

multiple formats for exporting ontologies to other platforms, and web version compatible with the 

desktop version. 

 

3 Modeling Multi-Level Security in OWL 

This section will demonstrate the steps for building an MLS ontology in Protégé. The three 

key components of an OWL ontology are classes, properties, and individuals. To distinguish each 

component, this project uses the following naming conventions without spaces: 

• Classes: Upper camel case (e.g., Person, Animal, Food)  

• Properties: Lower camel case (e.g., isGreaterThan, hasPet, movesTo)  

• Individuals: Leading underscore (e.g., _JohnSmith, _Dog, _Pizza) 

 

3.1 Building MLS Ontology 

3.1.1 Create Classes 

The implementation begins with defining the terminological knowledge. Previously, Chapter 

Two discussed that a security label has two components: sensitivity level and compartment. The 

first step is to create three classes—SecurityLabel, SensitivityLevel, and Compartment—and their 

subclasses. Referring to the lattice structure in Figure 3, each node will be a subclass of 

SecurityLabel. A security label has two components: sensitivity level and compartment. TopSecret 

and Secret are subclasses of SensitivityLevel, while BioNuke, Bio, Nuke, and Null (representing { 

}) are subclasses of Compartment. 

Because OWL uses open world reasoning, if two classes are not specified to be different types 

of things, they are considered unknown and allowed to have intersections. To specify that there 

are no common members in SecurityLabel, SensitivityLevel, and Compartment, these three classes 

must be disjoint from each other. This means that one individual cannot be an instance of more 

than one of these three classes. Protégé allows users to create a list of classes and indicate 

disjointness using the Create Class Hierarchy tool. To verify the implementation, select a random 

class to view at the bottom of the Class Description. All sibling classes of the selected class should 

appear in the Disjoint With section. 

In addition, at the same class hierarchy level as SecurityLabel, SensitivityLevel, and 

Compartment, two more disjoint classes, Subject and Object, are created for implementation in the 

next section. Table 1 shows the full list of classes with their class hierarchy levels. 

 
Table 1 

Classes and Subclasses 

Class Subclass 

Compartment Bio 

BioNuke 

Nuke 

Null 

SensitivityLevel TopSecret 

Secret 

Confidential 
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Class Subclass 

Unclassified 

SecurityLabel TS_BioNuke 

TS_Bio 

TS_Nuke 

TS_Null 

S_BioNuke 

S_Bio 

S_Nuke 

S_Null 

Subject  

Object  

 

3.1.2 Create Object Properties and Inverse Properties 

The second step is to define the binary relationships (properties) between entities. Table 2 

illustrates how common knowledge is converted into RDF triples and properties for the MLS 

ontology: 

 
Table 2 

Convert the Knowledge into RDF Triple and Property 

Knowledge RDF Triple Property 

A security label consists of one 

sensitivity level. 

SecurityLabel hasSensitivityLevel 

SensitivityLevel. 

hasSensitivityLevel 

A security label consists of one 

compartment 

SecurityLabel hasCompartment 

Compartment. 

hasCompartment 

The compartment BioNuke has 

subset Bio or Nuke. 

BioNuke hasSubset (Bio or Nuke) hasSubset 

The (sensitivity level) Top Secret is 

greater than (sensitivity level) 

Secret. 

TopSecret isGreaterThan Secret isGreaterThan 

A Subject has one security label. Subject hasSecurityLabel 

SecurityLabel. 

hasSecurityLabel 

Security label TS_{Bio} dominates 

security label S_{Bio}. 

TS_Bio dominates S_Bio. Dominates 

Security label TS_{Bio} cannot 

compare to security label 

S_{Nuke}. 

TS_Bio isIncomparableTo S_Nuke. isIncomparableTo 

A Subject can read an Object Subject canRead Object. canRead 

A Subject can write to an Object Subject canWrite Object CanWrite 

 

There are two types of RDF properties. The first type is object properties, which link 

individuals to other individuals. The second type is datatype properties, which link individuals to 

RDF datatypes (e.g., string, integer, date, etc.). In this MLS ontology, all properties are object 

properties. 

Properties have characteristics, which can be easily specified in Protégé (Figure 3.1). The 

transitive characteristic will be specified for three properties: hasSubset, isGreaterThan, and 



Bai and Son/PPJBR  Vol.15, No (1), Spring 2024, pp 

35 

 

dominates. These properties have the characteristic that if X is related to Y and Y is related to Z, 

then X is related to Z. It is not necessary to manually add an assertion stating that X is related to 

Z, as the inference engine can generate the inferred axioms if the property characteristics are 

specified. 

 
Figure 5 

Apply Transitive Characteristic to isGreaterThan 

 
 

Protégé also provides the option to define the domain and range of properties, similar to their 

meaning in mathematics. When two individuals are connected by a property in an RDF triple, the 

domain class specifies that the subject of the triple belongs to the domain class, while the range 

class specifies that the object of the triple belongs to the range class. 

Table 3 lists the domain and range for each property. For example, the domain of the property 

hasSensitivityLevel is SecurityLabel, and the range is SensitivityLevel. Whenever a triple assertion 

contains hasSensitivityLevel, the subject of this triple should be an instance of SecurityLabel, and 

the object should be an instance of SensitivityLevel. 

With the specification of property domain and range, as well as class disjointness, the built-in 

Protégé reasoner, Pellet, can detect inconsistent assertions that conflict with the description logic 

expressed in the model. The reasoner can identify inconsistencies such as A (an instance of 

SecurityLabel) having hasSensitivityLevel B (an instance of Compartment), or A (an instance of 

Compartment) having hasSensitivityLevel B (an instance of SensitivityLevel). 

 
Table 3 

List of Properties’ Domain and Range 

Object Property Domain Range 

hasSensitivityLevel SecurityLabel SensitivityLevel 

hasCompartment SecurityLabel Compartment 

hasSubset Compartment Compartment 

isGreaterThan SensitivityLevel SensitivityLevel 
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Object Property Domain Range 

dominates SecurityLabel SecurityLabel 

isIncomparableTo SecurityLabel SecurityLabel 

canRead Subject Object 

canWrite Subject Object 

 

Each object property can have an inverse property. In an RDF triple, the property links the 

subject to the object in one direction. Its inverse property applies this relationship from the opposite 

perspective. For example, if A is linked to B through property P, the inverse way of stating the 

same relationship is that B is linked to A through inverse property Pi. In Protégé, the inverse 

relationship between P and Pi can be defined in the Property Description panel. To better support 

rule inferences in the next chapter, an inverse property is created for each object property (Table 

4). 

 
Table 4 

Properties and Inverse Properties 

Property (P) Inverse Property (PI) 

hasSensitivityLevel isSensitivityLevelOf 

hasCompartment isCompartmentOf 

hasSubset isSubsetOf 

isGreaterThan isLessThan 

dominates isDominateBy 

isIncomparableTo N/A 

canRead canBeReadBy 

canWrite canBeWrittenBy 

 

3.1.3 Modeling Classes Expression with Property Restrictions 

The third step is to apply property restrictions to model class expressions. Properties describe 

the relationships between individuals and can also be used as a special kind of class description to 

ensure that all instances of the class satisfy the restriction. There are four types of property 

restrictions: existential, universal, cardinality, and value restrictions. To model the SecurityLabel 

class, existential and universal restrictions will be used to define SecurityLabel and its subclasses. 

For example, to model the TS_BioNuke class (Figure 6), the class must meet two conditions: 

1. The class must have a sensitivity label, and the security label must be TopSecret 

(existential & universal). 

2. The class must have a compartment, and the compartment must be BioNuke 

(existential & universal). 

According to the two conditions, four new property restrictions are applied: 

1. hasSensitivityLevel some TopSecret  

2. hasSensitivityLevel only TopSecret  

3. hasCompartment some BioNuke  

4. hasCompartment only BioNuke 

 
Figure 6 

Security Label TS_BioNuke  
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Users can click on the compartment of TS_BioNuke, BioNuke, and Protégé will redirect to 

the class description of this class (Figure 7). 

 
Figure 7 

Compartment BioNuke 

 
 

Moreover, the following table lists the property restrictions applied to each class. 

 
Table 5 

Property Restrictions of Each Class 

Class Subclass Property Restrictions 

Compartment BioNuke hasSubset some (Bio or Nuke) 

Bio hasSubset some Null 

Nuke hasSubset some Null 

SensitivityLevel TopSecret isGreaterThan some Secret 
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Class Subclass Property Restrictions 

Secret isGreaterThan some Confidential 

Confidential isGreaterThan some Unclassified 

SecurityLabel  hasSensitivityLevel some 

SensitivityLevel 

hasCompartment some 

Compartment 

TS_BioNuke hasSensitivityLevel some 

TopSecret 

hasSensitivityLevel only TopSecret 

hasCompartment some BioNuke 

hasCompartment only BioNuke 

TS_Bio hasSensitivityLevel some 

TopSecret 

hasSensitivityLevel only TopSecret 

hasCompartment some Bio 

hasCompartment only Bio 

TS_Nuke hasSensitivityLevel some 

TopSecret 

hasSensitivityLevel only TopSecret 

hasCompartment some Nuke 

hasCompartment only Nuke 

TS_Null hasSensitivityLevel some 

TopSecret 

hasSensitivityLevel only TopSecret 

hasCompartment some Null 

hasCompartment only Null 

S_BioNuke hasSensitivityLevel some Secret 

hasSensitivityLevel only Secret 

hasCompartment some BioNuke 

hasCompartment only BioNuke 

S_Bio hasSensitivityLevel some Secret 

hasSensitivityLevel only Secret 

hasCompartment some Bio 

hasCompartment only Bio 

S_Nuke hasSensitivityLevel some Secret 

hasSensitivityLevel only Secret 

hasCompartment some Nuke 

hasCompartment only Nuke 

S_Null hasSensitivityLevel some Secret 

hasSensitivityLevel only Secret 

hasCompartment some Null 

hasCompartment only Null 

Subject  hasSecurityLabel some 

SecurityLabel 

Object  hasSecurityLabel some 

SecurityLabel 
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3.1.4 Create Individuals with Property Assertions 

After modeling classes with property restrictions, we can then create instances with property 

assertions. Table 6 shows a list of individuals with their property assertions for each security label 

node of the lattice model. 

 
Table 6 

Individuals with Property Assertion 

Class Individual Property Assertions 

BioNuke _Compartment_BioNuke hasSubset _Compartment_Bio 

hasSubset _Compartment_Nuke 

Bio _Compartment_Bio hasSubset _Compartment_Null 

Nuke _Compartment_Nuke hasSubset _Compartment_Null 

Null _Compartment_Null  

TopSecret _SensitivityLevel_TopSecret isGreaterThan _SensitivityLevel_Secret 

Secret _SensitivityLevel_Secret  

TS_BioNuke _SecurityLabel_TS_BioNuke hasSensitivityLevel _SensitivityLevel_TopSecret 

hasCompartment _Compartment_BioNuke 

TS_Bio _SecurityLabel_TS_Bio hasSensitivityLevel _SensitivityLevel_TopSecret 

hasCompartment _Compartment_Bio 

TS_Nuke _SecurityLabel_TS_Nuke hasSensitivityLevel _SensitivityLevel_TopSecret 

hasCompartment _Compartment_Nuke 

TS_Null _SecurityLabel_TS_Null hasSensitivityLevel _SensitivityLevel_TopSecret 

hasCompartment _Compartment_Null 

S_BioNuke _SecurityLabel_S_BioNuke hasSensitivityLevel _SensitivityLevel_Secret 

hasCompartment _Compartment_BioNuke 

S_Bio _SecurityLabel_S_Bio hasSensitivityLevel _SensitivityLevel_Secret 

hasCompartment _Compartment_Bio 

S_Nuke _SecurityLabel_S_Nuke hasSensitivityLevel _SensitivityLevel_Secret 

hasCompartment _Compartment_Nuke 

S_Null _SecurityLabel_S_Null hasSensitivityLevel _SensitivityLevel_Secret 

hasCompartment _Compartment_Null 

 

At this step, the security label modeling is complete. The ontology modeling constructs 

terminological assertions that are applied to classes with property restrictions, while assertional 

knowledge is represented with individuals. For testing purposes, select the Compartment 

individual _Compartment_Bio and add an object property assertion to represent 

_Compartment_Bio isGreaterThan _Compartment_Null. When running the Pellet reasoner, an 

inconsistentOntologyException error message appears because Protégé explains (Figure 3.2) that 

the domain and range of isGreaterThan are limited to SensitivityLevel, which is disjoint from 

Compartment. The test assertion conflicts with the specified domain and range classes of 

isGreaterThan. This test demonstrates the reasoner's capability of catching inconsistency errors. 

The reasoner can be used to detect modeling errors at any step. 

 
Figure 8 

Protégé Inconsistent Ontology Explanation 
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4 SWRL Rule Implementation for MAC And BLP 

 

4.1 Apply Dominance Rule 

This section utilizes the Semantic Web Rule Language (SWRL) to enforce dominance rules 

within the MLS ontology. SWRL integrates OWL and Datalog expressions into Horn-like rules, 

allowing for "If …, then …" statements. The SWRL inference engine processes a set of predefined 

rules to apply relationships to the matching variables. Consequently, any modification to the 

ontology will automatically update the inferred axioms using SWRL. SWRL not only functions as 

an inference engine but also transfers the inferred axioms to the OWL model, making them 

explicitly represented. The ontology, along with the inferred axioms generated by the inference 

engine, can be exported for review in a simple text editor or other semantic tools. 

For a pair of security labels, the dominates relationship is not directly asserted. According to 

the dominance rule discussed in Section 2, two security labels can be compared for dominance as 

follows: 

An MLS system has a dominance rule that defines a partial order (≤) over the MLS security 

levels. This partial ordering (≤) is defined to ensure that two security levels can always be 

compared for dominance: 

Given two security levels L1 = S1:C1 and L2 = S2:C2, we write L1 ≤ L2, meaning L1 is dominated 

by (less than) L2 or L2 dominates (is greater than) L1 when 

• S2 is a higher sensitivity level than S  

• C1 is a subset of C2, namely, C1 ⊆ C2 

Property dominates and its inverse property isDominatedBy are used to represent the 

dominance relationship between the security labels. Convert the mathematical notation into 

SWRL, the following rules are created: 
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Rule 1: 

S1 – Compare two security labels L1 = S1:C1 and L2 = S2:C2, if S1 = S2, C2 has subset C1, then 

L2 dominates L1. 

 

Rule 2: 

S2 – Compare two security labels L1 = S1:C1 and L2 = S2:C2, if S2 is greater than S1, C2 has 

subset C1, then L2 dominates L1. 

 

Rule 3: 

S3 – Compare two security labels L1 = S1:C1 and L2 = S2:C2, if S2 is greater than S1, C2 = C1, 

then L2 dominates L1. 

 

4.2 Testing MLS Ontology with Mandatory Access Control Criteria 

This section demonstrates scenario tests using SWRL queries to detect comparable security 

label pairs (Figure 9) and incomparable security label pairs (Figure 10) to verify the correct 

implementation of the MLS lattice model. The SWRL queries can be executed in the SQWRLTab 

in Protégé to extract information from both asserted and inferred axioms generated by the SWRL 

inference engine. 

 
Figure 9 

List of All Comparable Security Label Pairs 

SecurityLabel(?L1) ^ hasSensitivityLevel(?L1,?S1) ^ hasCompartment(?L1,?C1) ^ 

SecurityLabel(?L2) ^ hasSensitivityLevel(?L2,?S2) ^ hasCompartment(?L2,?C2) ^ 

sameAs(?S1,?S2) ^ hasSubset(?C1,?C2) -> dominates(?L1,?L2) 

SecurityLabel(?L1) ^ hasSensitivityLevel(?L1,?S1) ^ hasCompartment(?L1,?C1) ^ 

SecurityLabel(?L2) ^ hasSensitivityLevel(?L2,?S2) ^ hasCompartment(?L2,?C2) ^ 

isGreaterThan(?S1,?S2) ^ hasSubset(?C1,?C2) -> dominates(?L1,?L2) 

SecurityLabel(?L1) ^ hasSensitivityLevel(?L1,?S1) ^ hasCompartment(?L1,?C1) ^ 

SecurityLabel(?L2) ^ hasSensitivityLevel(?L2,?S2) ^ hasCompartment(?L2,?C2) ^ 

isGreaterThan(?S2,?S1) ^ sameAs(?C1,?C2) -> dominates(?L2,?L1) 
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Figure 10 

List of All Incomparable Security Label Pairs 
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4.2.1 Test Scenario 1 (Comparable Security Labels) 

Query 1: 

SQ1 - Show all pairs of security labels with dominates relationships by ascending order. 

 

The SQ1 query identifies pairs of variables L1 and L2 where a dominates relationship exists. 

It selects all matching pairs from the database and outputs L1 and then L2 in ascending order. The 

domain and range of the dominates property are pre-defined, so the dominates relationship only 

exists between pairs of SecurityLabel instances. Running the query produces the results shown in 

Figure 9.  

To see how the dominates relationship applies to a specific security label, such as 

_SecurityLabel_TS_Bio, a test query (SQ2) can be used to show all security label instances that 

are dominated by it.  

 

Query 2: 

SQ2 - Show All Comparable Security Labels which are dominated by 

_SecurityLabel_TS_Bio 

 

 

SecurityLabel(?L1) ^ SecurityLabel(?L2) ^ dominates(?L1,?L2)  

-> sqwrl:select(?L1,?L2) ^ sqwrl:orderBy(?L1,?L2) 

dominates(_SecurityLabel_TS_Bio,?L) -> sqwrl:select(?L) 
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In Figure 11, three security label instances are returned. In lattice model (Figure 3), even the 

node TS{Bio} is not directly linked to the node S{Null}, but it dominates nodes TS{Null} and 

S{Bio}, which both dominate S{Null}. The inference engine refers to the dominates property’s 

transitivity characteristics to make an inferred axiom that TS{Bio} dominates S{Null}. 
 

Figure 11 

List of Comparable Security Labels of _SecurityLabel_TS_Bio 

 
4.2.2 Test Scenario 2 (Incomparable Security Labels) 

In the lattice model, even though the compartments {Bio} and {Nuke} are both subsets of the 

compartment {Bio, Nuke}, an object property isIncomparableTo represents the incomparable 

relationship between _Compartment_Bio and _Compartment_Nuke. Rule S4 is used to create an 

incomparable relationship between two security labels if their compartments are incomparable. 

The SQ3 query shows all security label pairs that have an incomparable relationship. The result of 

SQ3 is shown in Figure 10. 

 

Rule 4: 

S4 - Compare two security labels L1 = S1:C1 and L2 = S2:C2, if C1 and C2 are incomparable, 

then L1 and L2 are incomparable.  

 

Query 3: 

SQ3 - Show all incomparable security label pairs. 

SecurityLabel(?L1) ^ hasCompartment(?L1, ?C1) ^  

SecurityLabel(?L2) ^ hasCompartment(?L2, ?C2) ^  

isIncomparableTo(?C1, ?C2) -> isIncomparableTo(?L1, ?L2) 

SecurityLabel(?L1) ^ SecurityLabel(?L2) ^ isIncomparableTo(?L1, ?L2) -> 

sqwrl:select(?L1, ?L2) ^ sqwrl:orderBy(?L1, ?L2) 
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Comparing the result of SQ3 (Figure 10) to the result of SQ1 (Figure 9), we find that there are 

no identical pairs of security labels in both queries' results. Hence, the implementation shows that 

no MAC criteria are violated. We can assume that if two security labels are not comparable, then 

no dominates relationship exists between them. 

 

4.3 SWRL Rules for BLP Implementation within a Single Domain 

This section demonstrates the application of the BLP model's simple security property and 

star property to subjects (S) and objects (O), each with its own security label. In Protégé, create a 

list of new individuals with the assertions shown in Table 7. 

 
Table 7 

Subject and Object Individuals with Assertions 

Class Individual Assertion 

Subject _Subject_1 hasSecurityLabel  _SecurityLabel_S_BioNuke 

_Subject_2 hasSecurityLabel  _SecurityLabel_TS_Null 

_Subject_3 hasSecurityLabel  _SecurityLabel_S_Bio 

_Subject_4 hasSecurityLabel  _SecurityLabel_TS_Bio 

_Subject_5 hasSecurityLabel  _SecurityLabel_TS_Nuke 

_Subject_6 hasSecurityLabel  _SecurityLabel_S_Null 

_Subject_7 hasSecurityLabel  _SecurityLabel_TS_BioNuke 

_Subject_8 hasSecurityLabel  _SecurityLabel_S_Nuke 

Object _Object_1 hasSecurityLabel  _SecurityLabel_S_Nuke 

_Object_2 hasSecurityLabel  _SecurityLabel_S_Null 

_Object_3 hasSecurityLabel  _SecurityLabel_TS_Bio 

_Object_4 hasSecurityLabel  _SecurityLabel_TS_Null 

_Object_5 hasSecurityLabel  _SecurityLabel_S_BioNuke 

_Object_6 hasSecurityLabel  _SecurityLabel_S_Bio 

_Object_7 hasSecurityLabel  _SecurityLabel_TS_BioNuke 

_Object_8 hasSecurityLabel  _SecurityLabel_TS_Nuke 

 

4.3.1 Simple Security Property 

The "no read up" policy states that a subject (S) at a security level (sl(S)) may not read an 

object (O) if the security level (sl(O)) of the object is higher than the security level (sl(S)) of the 

subject. Therefore, the subject can read the object when: 

sl(O) ≤ sl(S) 

Therefore, canRead can utilize the pre-defined dominates relationship between security labels. 

Rule R5 defines that if the security label of the subject (SL) dominates the security label of the 

object, then the subject can read the object. Additionally, Rule R6 defines that if the subject's 

security label is equal to the object's security label, then a canRead relationship exists. The query 

RQ4 generates a complete list of canRead relationships in this ontology (Figure 12). 

 

Rule 5: 
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S5 - If sl(S) dominates sl(O), then sl(S) canRead sl(O).  This rule expresses that if the 

subject has higher classification than the object, then apply the canRead relationship between 

these two variables. 

 

Rule 6: 

S6. If sl(S) = sl(O), then sl(S) canRead sl(O). This rule expresses that if the subject and the 

object have the same classification, then apply 

 

Query 4: 

SQ4 - Show the list of canRead Objects of each Subject , both with their security labels in 

order of the Subject, then by the Object (Figure 12). 

 
Figure 12 

Query Result of SQ4 

 

Subject(?S) ^ Object(?O) ^ hasSecurityLabel(?S,?SL) ^ hasSecurityLabel(?S,?OL) ^ 

dominates(?SL,?OL) -> canRead(?S,?O) 

Subject(?S) ^ Object(?O) ^ hasSecurityLabel(?S,?SL) ^ hasSecurityLabel(?O,?OL) ^ 

sameAs(?SL,?OL) -> canRead(?S,?O) 

Subject(?S) ^ Object(?O) ^ hasSecurityLabel(?S, ?SL) ^ hasSecurityLabel(?O, ?OL) 

^ canRead(?S, ?O) -> sqwrl:select(?S, ?SL, ?O, ?OL) ^ sqwrl:orderBy(?S,?O)  
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To verify the implementation, Example 1 in Section 2 states that a subject with security 

clearance TS:_bio} cannot read an object with security classification TS_{bio, chem} because, 

although they both have Top Secret sensitivity levels, the compartment of the object is higher 

(hasSubset) than the subject's. In the ontology, the minor difference is that this project uses 

{bio,nuke} instead of {bio,chem}. The assumption is verified that the subject with 

_SecurityLabel_TS_Bio can only read objects with four types of security clearances: 

_SecurityLabel_TS_Bio, _SecurityLabel_TS_Null, _SecurityLabel_S_Bio, and 

_SecurityLabel_S_Null. 

Example 5 also discussed the scenario where a subject with clearance TS_{} can read an object 

with classification S_{}. There is a matching record in Figure 4.4 that shows _Subject_2 

(hasSecurityLabel _SecurityLabel_TS_Null) can read _Object_2 (hasSecurityLabel 

_SecurityLabel_S_Null). 

4.3.2 * (Star) Property 

The “no write-down” policy states that a subject at a given security level may not write to any 

object at a lower security level. The canWrite relationship exists when sl(S) ≤ sl(O). canWrite 

utilizes the dominates in the inverse way of canRead: 

 

Rule 7: 

S7 - If sl(O) dominates sl(S), then sl(S) canWrite sl(O). This rule expresses that if the 

classification of the object dominates (higher than) the clearance of the subject, then apply the 

canWrite relationship to these two variables. 

 

Rule 8: 

S8 - If sl(S) = sl(O), then sl(S) canWrite sl(O). This rule expresses that if the subject and the 

object have equal classification, then apply the canWrite relationship to these two variables. 

 

Query 5: 

SQ5 - Show the list of canWrite Objects of each Subject , both with their security labels in 

order of the Subject, then by the Object (Figure 4.5). 

 
Figure 13 

Query Result for SQ5 

Subject(?S) ^ Object(?O) ^ hasSecurityLabel(?S, ?SL) ^ hasSecurityLabel(?O, ?OL) ^ 

isDominatedBy(?SL, ?OL) -> canWrite(?S, ?O)  

Subject(?S) ^ Object(?O) ^ hasSecurityLabel(?S,?SL) ^ hasSecurityLabel(?O,?OL) ^ 

sameAs(?SL,?OL) -> canWrite(?S,?O) 

Subject(?S) ^ Object(?O) ^ hasSecurityLabel(?S,?SL) ^ hasSecurityLabel(?O,?OL) ^ 

sameAs(?SL,?OL) -> canWrite(?S,?O) 
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Figure 13 shows all pairs of canWrite relationships applied to the combination of subject and 

object variables. Each record indicates that a subject with a lower or equal clearance can write to 

an object with a higher or equal classification. The following three records support the hypotheses 

discussed in Examples 2, 3, and 7: 

• _Subject_4 with _SecurityLabel_TS_Bio canWrite _Object_7 with 

_SecurityLabel_TS_BioNuke. 

• _Subject_6 (hasSecurityLabel _SecurityLabel_S_Null) canWrite _object_4 

(hasSecurityLabel __SecurityLabel_TS_Null) 

• _Subject_3 (hasSecurityLabel _SecurityLabel_S_Bio) canWrite _object_7 

(hasSecurityLabel __SecurityLabel_TS_BioNuke) 

 

4.4 Additional Notes for Implementation 

Unlike other query languages in Protégé, SWRL queries only extract information from 

assertional knowledge (relationships between individuals). It is crucial to ensure that actual 

assertions are made for each individual. In OWL, it is not incorrect to leave object property 

assertions blank, but the inference engine cannot generate any inferred assertions without 

assertional knowledge input. 

For example, to apply dominance rule S1 with two given variables, L1 

(_SecurityLabel_TS_Bio) and L2 (_SecurityLabel_TS_Null), each must be explicitly defined with 

a sensitivity level and compartment. If L1 does not have a clear classification of its compartment 
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C1, even if it has a compartment instance Bio on the terminological side, the rule's two conditions, 

hasCompartment(?L1, ?C1) and hasSubset(?C1, ?C2), are not fulfilled. 

 

 

5 Future Work and Conclusion  

 

This research has successfully demonstrated the feasibility and effectiveness of implementing 

Multi-Level Security (MLS) policies using semantic web technologies, specifically through the 

application of the Web Ontology Language (OWL). By integrating the principles of Mandatory 

Access Control (MAC) and the Bell-LaPadula (BLP) model within a semantic framework, we 

have established a robust system capable of enforcing stringent security protocols that ensure the 

flow of information is strictly from lower to higher classified entities. 

Throughout this project, the construction and validation of an MLS ontology were explored, 

highlighting the capability of semantic technologies to enhance the traditional security measures. 

The use of OWL facilitated a detailed representation of security levels, dominance rules, and 

access control mechanisms which were dynamically applied through the Semantic Web Rule 

Language (SWRL). This approach not only supported the enforcement of complex security 

policies but also contributed to the flexibility and scalability of the security system, 

accommodating various security scenarios in a highly controlled environment. 

Furthermore, the project underscored the importance of adapting security measures to 

accommodate the evolving nature of the web and its technologies. As the digital landscape 

becomes increasingly complex, the integration of semantic web technologies with traditional 

security frameworks presents a promising avenue for enhancing data security and integrity across 

various domains. 

The implications of this research are significant for sectors that require high levels of 

information security, such as military, government, and healthcare. The methodology and findings 

discussed provide a foundation for future studies to explore and expand upon, particularly in areas 

involving the integration of more advanced semantic tools and the exploration of new security 

scenarios that may arise from the ever-evolving web technologies. 

In the near future, the development of Multi-Level Security (MLS) within a semantic web 

framework is poised for significant advancements. As semantic technologies evolve, integrating 

MLS more deeply into these frameworks will allow for more nuanced and context-aware security 

policies that dynamically adjust based on real-time data interpretation and threat analysis. 

Anticipated innovations include the use of advanced artificial intelligence algorithms to enhance 

decision-making processes within MLS systems, enabling them to automatically adapt security 

levels and access controls based on changing environmental cues and user behaviors. Additionally, 

there is potential for leveraging semantic relationships and ontologies to develop more 

sophisticated data access protocols that can understand and react to complex user queries with 

enhanced security precision. This integration will not only streamline security management but 

SecurityLabel(?L1) ^ hasSensitivityLevel(?L1,?S1) ^ hasCompartment(?L1,?C1) ^ 
SecurityLabel(?L2) ^ hasSensitivityLevel(?L2,?S2) ^ hasCompartment(?L2,?C2) ^ 
sameAs(?S1,?S2) ^ hasSubset(?C1,?C2) -> dominates(?L1,?L2) 
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also increase its efficacy, ensuring that sensitive information remains protected as it becomes 

increasingly interconnected across diverse and expansive digital ecosystems. 
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